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Functionalisation of PAMAM dendrimers with a small

number of thiol groups makes them good ligands for CdSe/

ZnSe nanoparticles; the particles coated with thiolated den-

drimers have good cell permeability and are potent transfection

agents.

Semiconductor (e.g., CdSe, CdS, CdTe etc.) nanoparticles have

recently attracted much attention due to their applications as

fluorescent biological probes.1 The main features of these materials

are narrow symmetrical fluorescence spectra, the possibility to fine-

tune the colour of fluorescence by modifying particle size, very

broad excitation spectra enabling simultaneous multicolour

detection, high stability towards photobleaching, relatively simple

bioconjugation protocols. For biological applications, nanoparti-

cles must be water-soluble. The most successful nanoparticle

synthesis, however, leads to nanoparticles coated with hydro-

phobic molecules (e.g., trioctylphosphine (TOPO) or dodecyl-

amine).2 These particles are only soluble in organic solvents.

Solubility of nanoparticles in water is usually achieved by coating

them with a suitable organic ligand terminated with a hydrophilic

functional group. Such ligands must adhere strongly to the

nanoparticle surface; thiols, phosphines and amines all have

affinity to cadmium halcogenides.

Thiols are by far the strongest ligands for CdSe nanoparticles;

unfortunately adsorption of thiols on the nanoparticle surface

usuallydrasticallyreduces thequantumyieldof fluorescence.Many

strategies have been used to overcome this problem, including

overcoating the nanoparticle with a thin layer of another

semiconductorwithawiderbandgap,3 optimisationofthesynthesis

conditions, design of multipendant phosphine-based ligands for

nanoparticles,4 use of polymers as ligands,5 etc. Some significant

achivements have been made and a number of researchers reported

preparation of water-soluble, highly fluorescent nanoparticles.6

Water-soluble nanoparicles for biological applications are also

available commercially.7 Nevertheless, many reported procedures

are long and expensive, or difficult to reproduce.

In our search for a reactive, water-soluble and readily available

ligand for CdSe nanoparticles, we explored the possibility of using

PAMAM dendrimers to protect the nanoparticle surface.

PAMAM dendrimers possess a large number of primary and

tertiary amine groups at the surface and in the interior of the

molecule.8 Hence, these materials possess strong affinity for transi-

tion metal ions.9 Indeed, preparation of PAMAM dendrimer–

CdSe nanocomposites using a solvolytic route has been reported in

the literature.10

Unfortunately, we were unable to develop a reproducible

procedure for replacement of ligands in as-synthesised TOPO-

protected CdSe nanoparticles with PAMAM dendrimers. This is

probably due to the relatively low affinity of the amine groups for

the CdSe particles. In order to improve the binding ability of the

PAMAM ligands, we have introduced a small number of thiol

groups in the dendrimer structure. Thiol-functionalised PAMAM

dendrimers (Fig. 1) were prepared by reacting commercially

available PAMAM dendrimers with N-hydroxysuccinimide ester

of 3-mercaptopropionic acid.11

PAMAM generation 4 dendrimers containing 64 amino groups

were thiolated to obtain ca. 2 thiol group per dendrimer molecule.

The dendrimers thus prepared can readily replace TOPO ligands

from the surface of CdSe/ZnSe nanoparticles prepared by a

published procedure.12 Ligand exchange was carried out by

addition of dendrimer to TOPO-coated nanoparticles in mixture

of methanol with chloroform. The excess dendrimer was removed

using extraction.13 The purity of nanoparticles was confirmed by

gel permeation chromatography (GPC).14 Fig. 2 shows a typical

GPC trace. The identification of peaks as nanoparticles (retention

time 4.2 min) and excess of free dendrimer (retention time 11.9 min)

was achieved by UV-Vis spectroscopy (the corresponding spectra

are shown on the insets in Fig. 2).

Dendrimer-protected nanoparticles showed high stability and

good fluorescence properties. Partial thiolation is the key to these

properties. The multiple terminal amino groups of the dendrimers

can stabilise CdSe/ZnSe nanoparticles without adversely affecting

their fluorescent properties; on the contrary, amino ligands are

known to improve fluorescent properties of semiconductor

nanoparticles.15 However, the poor affinity of amines for CdSe

surface does not provide sufficient stabilisation against aggrega-

tion. Addition of only a small number of thiol groups significantly

improves the affinity of the ligand for nanoparticles and does not

significantly affect fluorescent properties. The UV-Vis and

fluorescence spectra of dendrimer-coated nanoparticles are shown

in Fig. 3.

An important property of PAMAM dendrimers is their ability

to permeate cell walls. Due to their cell permeability properties,

PAMAM dendrimers are commercially used as transfection agents

(SuperFect, available from Qiagen). Cell permeability is highest for

high generation dendrimers, and can be further improved by

partial thermal degradation of these materials.16 We reasoned that

dendrimer-coated nanoparticles could mimic higher generation
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dendrimers. Indeed, orange-fluorescing CdSe/ZnSe nanoparticles

are ca. 4 nm in diameter.17 Dendrimer coating adds ca. 3–4 nm

organic shell. The size of the whole assembly is hence ca. 11 nm.

This can be compared with the diameter of generation 9 PAMAM

dendrimer (11 nm).18 Like dendrimers, the coated nanoparticles

have spherical shape with the surface dominated by the amino

groups.

In order to check if the dendrimer-stabilised nanoparticles can

indeed permeate the cell wall, we incubated live non-differentiated

teratocarcinoma NT2 cells19 with the buffered solutions of

nanoparticles.20 After washing with the buffer, the live cells were

analysed using confocal microscopy.21 The image in Fig. 4a is the

fluorescence micrograph, whereas the image in Fig. 4b is the visible

micrograph. The nanoparticles were mostly localised in the

cytoplasm, as evidenced by the analysis of z-stacked confocal

images.

In order to probe whether the dendrimer-coated nanoparticles

can help transfect other molecules across the cell membrane, we

studied transport of an EF-hand calcium-binding protein S100A4

in NT2 cells. S100A4 protein possesses important features such as

conformational changes in the presence of calcium and the ability

to disassemble myosin filaments and possibly other protein

oligomers.22 This protein is thought to be a perfect tool to

influence cellular proliferation, differentiation and apoptosis. The

calcium dependent binding to its targets and also the ability to

form heterotetramers with other S100 proteins23 might help to use

this protein as a potential drug delivery vector.

To help independently visualise the protein and the nanopar-

ticles, the protein was labelled using an Alexa Fluor 488 protein

labelling kit (Molecular Probes). The labelled protein was then

incubated with the cells in the presence of dendrimer-coated

nanoparticles.24 The cells were fixed and treated with DAPI stain

in order to visualise the nuclei. The fluorescence confocal images

are shown in Fig. 5. The blue channel corresponds to the DAPI

stain, the green channel is the Alexa Fluor dye, and the red channel

is CdSe/ZnSe nanoparticles.

It is clearly seen that the nanoparticles successfully transported

the S100A4 protein into the cell. Most protein localised in the

cytoplasm, with very little penetration into the nucleus. Control

experiments showed that the level of protein transfection without

nanoparticles is significantly lower (see the electronic supplemen-

tary information{). Transfection by using particles as a delivery

vesicles is the most efficient way to transfer proteins into the cell

that has a long lasting effect and may also help to avoid interaction

and activation of extracellular receptors when protein interacts

directly with the cellular surface.

It is interesting to note the co-localisation of the protein and the

nanoparticles in the cytoplasm. We believe that this is due to the

strong binding of protein to the polycationic polyamine surface of

the dendrimer-coated nanoparticles.

In conclusion, we have shown that partial thiolation of

PAMAM dendrimers makes them good ligands for CdSe/ZnSe

Fig. 1 Preparation of thiolated PAMAM dendrimers. The structure of the dendrimers is shown schematically for brevity.

Fig. 2 GPC trace of CdSe/ZnSe nanoparticles coated with partially

thiolated PAMAM dendrimers. The insets show UV-Vis spectra of the

two main peaks.

Fig. 3 UV-Vis (left) and fluorescence (right) spectra of thiolated

PAMAM dendrimer-protected CdSe/ZnSe nanoparticles.

Fig. 4 Confocal fluorescence (a) and visible (b) images of live NT2 cells

incubated with dendrimer-coated CdSe/ZnSe nanoparticles.
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nanoparticles. The dendrimer-protected nanoparticles are soluble

in water and have good stability. The dendrimer-coated nano-

particles can transport other molecules across the cell wall and

hence are promising fluorescent transfecting agents.
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